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J. Phys. A: Math. Gen. 24 (1991) 1335-1350. Printed in the U K  

Short-distance expansion for the local susceptibility and pair 
correlation function at continuous wetting transitions 

A 0 Parry 
H H Wills Physics Laboratory, University of Bristol, Bristol BS8 ITL, UK 

Received 26 October 1990 

Abstract. A scaling ansau is proposed for the density profile p ( z )  (with z the distance 
normal from the substrate) for a fluid undergoing a continuous wetting transition at a wall. 
The ansatz predicts that, in the fluctuation dominated regime, the local susceptibility 
( d p ( z ) / d p j r ,  with p the chemical potential, has a simple power law position dependence 
forshart distances z<< 5,. the perpendicularcorrelation length. The power law isdetermined 
by the wetting critical exponents, which is different for complete and critical wetting. The 
scaling predictions are confirmed in dimension d = 2 by explicit analysis for an interfacial 
Hamiltonian model o f  the wetting transition. Far critical wetting a scaling ansatz for the 
form of the transverse moments of the two-point correlation function G is postulated 
which now yields the I,, z2 dependence o f  G in terms of critical exponents. Calculations 
again confirm the scaling theory ford  = 2. The analysis highlights the different qualitative 
and quantitative features of the response functions for critical and complete wetting for 
fluids with short-ranged forces. 

1. Introduction 

In this paper we are concerned with the spatial dependence of the local susceptibility 
and pair correlation function when a thick wetting layer of liquid is adsorbed at a 
planar wall-vapour interface. We assume that the wall exerts an external potential 
V ( z ) ,  with z normal to the wall, on molecules in the fluid, which is sufficiently attractive 
to absorb a liquid film of thickness I (see figure 1). Close to the wall the fluid density 

Figure 1. Schematic density profile for a liquid wetting film a1 a wall-vapour interface. In 
the limit of complete or critical wetting the thickness of the wetting film I diverges. For 
d 6 3 the interfacial width 5, also diverges in this limit. 
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p ( z )  exhibits oscillations due t o  packing and volume exclusion effects. Away from the 
wall, but for z < I, the number density is almost constant and that of a liquid, p , .  A 
liquid-vapour interface of width the density 
decays to that of the bulk vapour, p b .  

We will he considering the situation when I diverges to infinity in a continuous 
manner as some thermodynamic field approaches a critical value. Such wetting transi- 
tions have been the subject of much recent research-see for example the reviews of 

continuous wetting transitions constitute examples of critical phenomena in 
inhomogeneous systems. As I diverges, capillary-wave-like fluctuations of the liquid- 
vapour interface result in the divergence of a transverse correlation length ell at the 
edge of the wetting film. For d S 3 the width of the liquid-vapour interface also diverges 
as I, ell+ CO, i.e. tl - @""'. 

The di:.ergexe of the !exg!hs !, e,, aiid eL a:e characterized bq' c:i!ica! ex pan en:^ 
and we distinguish between two types of transition: 

( a )  Crilical welling. This occurs as the temperature T (or attractive external poten- 
tial strength E )  is increased towards the wetting temperature T, (field strength E,) 

whilst the bulk fluid is kept at saturation chemical potential p = P,.~-( T) .  The scaling 
fields i= I( T - T')/ T,i and I( E - &,)/&,I are equivalent for a critical wetting transition. 
The exponents ITP defined by 

is centred at z - I ;  over the distance 

n:-*-:-!- l l n O 0 ,  - " A  L.A.:..,, ,,non\ *"__^I. ^F*I.. .  :..*..-"". ^.^_^ A---.- AI.^ CÂ . .L-. 
"ISLIIbII  ,1700, 'all" O & . L L b &  ,L77",. L*I"LII "1 LllC I I I I C I C S L  SLClllb l l " L l l  L11S ,ac, mac 

P = PLrStC ( 1 0 )  

P = ILsar- ( 1 b )  CL - r-"l 
e,, - F " i i  P = P r a t i .  (IC) 

I -  i -0 .  

!n addition, there is a singl?!ar centribation ?e the wa!!-gas excess grand petentie! 
per unit area P I ,  

xgg-  i 2 - m .  P = P s a t i .  ( I d )  

There are two relevant scaling fields for critical wetting, i and h, where the latter 
measures the undersaturation of the bulk vapour: ha (psa,-p) .  Exponent relations can 
be estab!l:hed from thermodynamic arguments (Evans and Parry !084) 01 from !he 
appropriate scaling hypothesis for E."' (Nakanishi and Fisher 1982), 

(2) z!$Ag = r 2 - " s  W (  hi-*) 

where A is a gap exponent ( A  = 2-  a, -pJ  and W is the scaling function (see also 
Sullivan and Telo da Gama 1986). 

( b !  &.~p!ete we!!ing. Comp!ete wetting QCCETS as p+p, *< - (T )  for T >  TWt There 
is only one relevant scaling field, h, and the analogous exponents are defined by 

I I h-8' (3a) 

CL I h-"? (36) 

f ,  - h-"i" (3c) 

x($ SI" *  - h'-":" ( 3 d )  

In the present paper we ask the question, how do fluctuation effects at wetting 
transitions determine the spatial dependence of the local susceptibility x ( z )  = 
( J P ( Z ) / J P ) ~  and pair correlation function G(r , ,  r2)? A few facts are already known 
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about these quantities. By analogy with the well-studied problem of interface localiza- 
tion in a gravitational field ( V ( z )  = mgz) it is known that x ( z )  will exhibit a peak at 
the liquid-vapour edge of the wetting film due to capillary-wave-like fluctuations of 
the intrinsic interface (e.g. Evans 1979). The height of the peak should diverge as the 
film thickness increases, i.e. 

- L ' C i  2-1. (4) 

This behaviour has been verified in a mean-field model where 5, remains finite 
(Tarazona and Evans 1982). 

In addition, it is known that for systems with short-ranged forces the local suscepti- 
bility near the wall ~ ( z  - 0) must diverge at a critical wetting transition (see for example 
Parry and Evans 1989), a fact that has been used to determine critical wetting exponents 
in computer simulations (Binder et a /  1986). Similarly, one expects that the transverse 
Fourier transform of G exhibits a characteristic Omstein-Zernike (02) capillary-wave- 
like divergence when both particles are located in the edge of the wetting film; we 
return to this later. Recent sum rule results (Henderson 1986, Evans and Parry 1989) 
also predict that, at a critical wetting transition with short-ranged forces, G is singular 
when one or both particles are located near the wall. 

In view of these considerations it is clear that, a t  least for critical wetting transitions, 
in systems with short-ranged forces the response function ~ ( z )  and G ( r l ,  r2 )  exhibit 
singular behaviour throughout the inhomogeneous region. The situation is not unlike 
that of standard critical phenomena where surface and bulk quantities exhibit different 
singularities as T +  T,. Recall that the local magnetic susceptibility x ( z )  = J m ( z ) / d h  
diverges with exponent y in ihe b~ii(, but as i T, - Ti-?V ai tire surFace iayer. Furthermore, 
renormalization group calculations predict that the local susceptibility exhibits an 
asymptotic scaling form ~ ( z )  - (Tc -  T)-'hX(z/&,), which results in a singular short- 
distance expansion (i.e. for z<< &, the bulk correlation length) for x ( z )  (Diehl 1986). 
Indeed, such spatial dependence should be expected generally when any local operator 
has different scaling dimensions at and away from the surface (Diehl 1986). With this 

susceptibility and pair correlation function at fluctuation-dominated wetting transitions. 
Hereafter we will be dealing with systems with short-ranged fluid-fluid and wall- 

fluid forces that are below their upper critical dimension. Such systems belong to the 
strong- and weak-fluctuation regime universality classes for critical and complete 
wetting, respectively. The critical exponents for complete and critical wetting with 
short-ranged forces are summarized in table 1. Table 2 lists the important exponent 
relations for the critical exponents defined in ( l ) ,  (2) and (3) corresponding to systems 

u'isei-va;ion in ;he aiia:yses sca:ing i i io i ie~ ,zs  of ;he ;oca: 

Table 1. Exponents for complele and critical wetting for systems with shot'-ranged forces. 
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Table 2. Exponent relations for complete and critical wetting for systems below their upper 
critical dimension. For complete wetting these relations uniquely determine the critical 
exponents p:"= U:" = (3- d) / (d  + I), UT = 2/(d + 11, e:"= 4/(d + 1). 

Complete wetting Critical wetting 

below their upper critical dimension. These exponent relations uniquely determine the 
complete wetting exponents. For critical wetting there is one free exponent. 

The paper is arranged as follows. In section 2 we develop a scaling theory for the 
density profile p ( z )  of a fluid near a (fluctuation-dominated) wetting transition. The 
scaling hypothesis allows the explicit short-distance position dependence of the local 
susceptibility to be calculated in terms of critical exponents. Here short distance means 
that 0 < z << tl. For critical wetting we find 

while for complete wetting 

In section 3 these predictions are confirmed in two dimensions by explicit analysis of 
two effective interfacial Hamiltonians. The results are compared with the corresponding 
mean-field predictions. Section 4 generalizes the scaling theory of section 2 to the 
transverse moments of G(r , ,  r2j at a critical wetting transition. This theory predicts 
that the zeroth transverse moment G,(z,, z2)  has the asymptotic form 

G,,(z,, z2) = i - " ~ ( z , z 2 ) " - a ~ 1 ' p ~  2,. z2<< CL ( 6 )  
which is confirmed in section 5 by analysis of Burkhardt's (1989) exact solution for 
the propagator at a critical wetting transition in d = 2 dimensions. Connection is made 
once more with the corresponding mean-field result. We conclude in section 6 with a 
summary of our results and some comments on the form of G for complete wetting 
in d =2.  

2. Scaling of the density profile and local susceptibility in the fluctuation-dominated 
regime 

For short-ranged fluid-fluid and wall-fluid forces the upper critical dimension for both 
complete and critical wetting is d'," = d, = 3. This dimension separates the mean-field 
regime from the fluctuation-dominated regime for both types of transitiont. An impor- 
tant consequence of scaling (see for example Lipowsky and Fisher 1987) for systems 

t Note that Since we are dealing with shon-ranged farces there is no weak-fluctuation regime for the critical 
wetting transition (Lipowsky and Fisher 1987). 
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below their upper critical dimension (table 2) is that p. = v1 and p:" = U;", i.e. 

1-51 d < d ,  or d < d:" 

for critical and complete wetting. It follows that, for each transition, there is only one 
relevant length scale normal to the wall that sets the scale for long-ranged fluctuations. 
Using this idea it is straightforward to construct a scaling ansatz for x ( z )  for each 
transition. Using (4) we suppose that x(z) has a singular contribution which can be 
written as its maximal value (i.e. when z - I) modulated by a function of the single 
variable z / l .  Thus we write 

h = 0, critical wetting ( 7 a )  

complete wetting (76) 

from (4) 2 d  the exponcn! re!ations. The sca!ing functions U and Y'" most be of the 

x ; i  = ~ - ( d + l l " l l / 2 x (  zie.)  
sing = h- (d+ l lu7 /2~co(~hP7)  

X ( Z I  

where we have omitted the metric factors for simplicity. The prefactors in (7) follow 

order of unity when the particle is located at the edge of wetting layer ( X ( 1 ) -  
1 ,  X c " ( l ) - l )  where x ( z )  is maximal. 

They must also tend to zero for vanishing and diverging arguments so that x ( z )  
has the appropriate peak. 

It is interesting to note that (7a) and (76) may be derived from a scaling ansatz 
for the density profile at each transition. Since the susceptibility involves a derivative 
with respect to the chemical potential it is necessary to maintain h # 0 in the scaling 
ansatz for p ( z )  at a critical wetting transition. We split the density profile into a 
short-ranged contribution pSR(z) and a scaling contribution valid in the asymptotic 
limit h +O,  i+ 0: 

P ( Z )  =psn(Z)  fPI-(Pi-Pg)~(ZrpP: h T A )  (Sa )  

and 

p ( z )  = pyR( z )+p l -  ( p I  - p J H ' " ( z h P P ) .  (8b )  

The short-ranged contribution arises from the perturbation to the density profile due 
to packing effects at the wall. We expect that p S R ( z )  decays exponentially for z >> .& 
(for T <  T, and short-ranged forces). The scaling functions 3 ( x , y )  and P ( x )  have 
been normalized such that E(m, y )  = 3:'"(m) = 1 and so that a bulk gas density pp is 
reached at z =Co. In the following we ignore any temperature and pressure dependence 
of the bulk densities. Note that the scaling of h with Tin (sa )  is identical to that found 
in the standard free-energy scaling hypothesis (2). Differentiating (Sa) and (86) yields 
the scaling form of x ( z ) :  

.. Pg( z) =constant i - A f f i ( z i P s ,  0 )  h = O  ( sa)  

and 

,y"""(z) = constant h - ' Z y ( z h P ? ) ( z h e )  (96) 
where the subscript refers to a (partial) differential with respect to that variable. 
Equations (9a) and (96) are equivalent to ( 7 0 )  and ( 7 b )  since A = ( d  + l ) q / 2  and 
v y  = 2 / ( d  + 1 )  for d <3.  It is not within the scope of the scaling analysis to identify 
completely the form of the scaling functions X and X E o  appearing in ( 7 ) .  However, 
it is possible to be precise about the nature of X ( x )  and X " ( x )  for x+O. To do this 
we need some independent requirement on ~ ( 2 ) .  This is not difficult to find. Henderson 
(1986) and Evans and Parry (1989) have identified an exact requirement for x ( a )  
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where a is a microscopic distance from the wall (of the order of the range of the 
potential). They find 

which is simply the fluid generalization of a surface Maxwell relation for contact 
surface fields (Parry and Evans 1989). It follows from (10) that 

h = 0, critical wetting (11) 

x""K((a) = constant complete wetting (12) 

x""6(a )  i - ( l + P . l  

and 

which illustrates that fluctuation effects are more pronounced at critical wetting transi- 
tions. Notice that (12) asserts that the singular contribution to x ( a )  at complete wetting 
is a finite and non-zero constant. It does not mean that there is no singular contribution. 
Whilst (12) implies that x ( a )  cannot diverge at a complete wetting transition, it has 
been found from mean-field analysis (Evans and Parry 1989) that there is an extra 
finite contribution to x ( a )  when p +pr.,-, T >  T, (where complete wetting occurs) 
compared with p +pia,+ at  the same temperature (no wetting film). It is unlikely that 
fluctuation effects in lower dimensions would reduce this finite contribution to zero. 

If we assume that X(x)ccxp and X'"(X)~X"'" as x+O, then (7), (11) and (12) 
may be combined to determine p and p c o  in terms of exponents defined already. Finally, 
we arrive at the desired short-distance expansions for ~ ( 2 ) :  

xs '"6( z )  = i - ( ' + P 3 1 z ( ' - " , ) / P s  h = 0, zip.<< 1 (13 )  

and 

~ " ' " ' ( z )  =constant z'":. zh@?<< 1.  (14) 

Equations (13) and (14) predict the explicit z dependence of the susceptibility for 
arbitrary large (but finite) z in the limit I +  00. For dimension d = 2 they predict, using 
table 1, 

, p ( z ) a  i - 2 z  h = 0, Z<< 1 (15) 

and 

p( Z) oc 2' ~ h ' / ' < <  1 (16) 

for complete and critical wetting, respectively. The latter result is particularly simple 
since it implies a cubic dependence Vz in the limit of complete wetting h = 0. 

It is also possible to derive a short-distance expansion for the singular part of the 
density profile at complete and critical wetting, i.e. to determine the power law decay 
of E(x,0) and P ( x )  as x+O. For complete wetting this follows simply from the 
integration of (14): 

p ( z ) = p E ( z )  tp,-constant hz"@$+. . zhfl?<< 1. (17) 

For critical wetting it is necessary to introduce a thermodynamic requirement which 
identifies the singular contribution to p ( a ) .  This is provided by the sum rule result 
(Evans and Parry 1989) 
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valid for systems with short-ranged forces. Equation (8) implies that p ( a )  contains a 
singular piece - F-".. I t  follows that for critical wetting 

p ( z )  = p s n ( z ) + p ,  -constant Pm~z( ' -"J ' ' \  h=O,zT'*C; 1. (19) 

These predictions are of rather less interest than the corresponding ones for the local 
susceptibility, however, since the singular contribution to the density profile must 
necessarily vanish at the appropriate transition. 

In the next section we turn to a specific model of a two-dimensional wetting 
transition to test these scaling predictions. 

3. Calculations for the local susceptibility: interfacial Hamiltonian and 
mean-field analysis 

Twa-dixensicna! so!id-on-sn!id ( S G S )  and eEeaire interfacia! Ue-i!tcnian: are an 
important class of exactly solvable models for wetting transitions. Whilst not being 
truly microscopic, the models are believed (see for example the discussion by Huse et 
a/ (1985)) to describe correctly the low-temperature fluctuations of an intrinsic interface 
bound by an external potential. Both critical wetting (Vallade and Lajzerowicz 1981; 
Burkhardt 1981; Chalker 1981) and complete wetting (van Leeuwen and Hilhorst 1981; 
Lipo~sky !?U; .Abraham and Smi!h !?86) have bee!! s!~died using !hese mode!$ and 
it is a simple task to extend these analyses to calculate the local susceptibility. For 
completeness we recall briefly the details of the continuum interfacial Hamiltonian 
model and its transfer matrix analysis. Extensive details may be found in Lipowsky 
(1988). The Hamiltonian is 

H =  J - ,  [imdx(P(V/(x))2+ \ A  U ( / ( . ) ) )  (20) 

where l ( x )  denotes the instantaneous height of the fluctuating liquid-vapour interface 
(with surface tension U )  from the wall at position x. The interface height is allowed 
t o  vary continuously in the half space O <  I(x)<oo. The lower bound on / ( x )  may be 
imposed by introducing the hard-wall boundary condition U( /  < 0) =Co. The effective 
interface binding potential U ( / )  depends on  the microscopic details of the wall-fluid 
and fluid-fluid forces. In the presence of an undersaturated bulk vapour there is always 
a linear contribution: 

U ( / )  = h / +  U,(/). (21) 
To describe critical and complete wetting transitions with short-ranged forces we 

follow Vallade and Lajzerowicz (1981) and Lipowsky (1985) and specify that U,(/) 
L"" r L "  F--- ,,a> l l l G  L"II.1 

1<0 

U,(/)= -IU,l O < / < a  (22a) { y  / > a  

for critical wetting and 
.. I./ ._"",.\ 
U , ( l ) 3  U , ( l )  

with 
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for complete wetting. The potentials (22a) and (226) correspond to those of a square 
well and purely repulsive potential, respectively. 

Returning to the formal analysis, the partition function for (20) may he easily 
evaluated using transfer matrix methods. This approach elegantly exploits the Feynman 
path-integral formulation of quantum mechanics. The thermodynamic observables and 
response functions of the system may he described by the eigenfunctions $ ; ( I )  and 
eigenvalues E; satisfying the Schrodinger equation 

where p = ( K 8 T ) - ’ .  In particular, the ground state (normalized) wave function $,(/) 
determines the probability P ( l )  of finding the interface at height /, i.e. 

P(1) = $ 3 1 )  (24) 

whilst the ground state energy Eo can he identified with the (singular) excess grand 
potential, i.e. X(”= E,. The density profile p ( z )  is constructed in the usual way by 
assuming that the instantaneous order parameter profile /(a-) separates a region of 
high-density liquid p, below it from a low density gas pp above it. Using (24), it follows 
that the average density p ( z )  at height z is given by 

P ( Z )  = pg + (PI - P,) $;(I) dl. (25) 

Whilst it is clear that the model cannot describe any short-ranged structure arising 
from packing effects near the wall it should accurately describe the rffect of fluctuations. 
To proceed we consider the cases of critical and complete wetting separately. 

3.1. Critical wetting 

In the absence of a bulk field h = 0 and for T <  T, there is one bound state with 
$,,(l)ae-“ for / > a  and a continuum of scattering states. If a small bulk field h is 
applied, the ground state wave function & will satisfy, asymptotically, the equation 
(Vallade and Lazjerowicz 1981) 

where all constants of proportionality are set to unity. W is the scaling function for 
the free energy (i.e. (2)). Equation (26) allows the solution 

$o( 1 )  a Aj(h’/’/ + i*h-’” W( hi-’)) (27) 

where Ai denotes the Airy function. It follows that the density profile p ( z )  is given by 

where, for simplicity, we have ignored the variation of Jl0 when I < a. Equation (28) 
may he rewritten 
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with 

Q, = zt (  hT-J)’/3+ (h i - ’ ) - ’ / ’  W (  h i - 3 )  (296) 

Q2=(h;-J)-2/’W(h;-3) .  ( 2 9 ~ )  
Thus the density profile p ( z )  is indeed a scaled function of z i p .  and hi -A  (note that 
p, = 1 and A = 3; table 1). For fixed ;# 0 both Q,  and Q2 diverge as h + 0. In this limit 
we may use the leading order asymptotic expansion of the Airy function to deduce 

and 

where r denotes the incomplete gamma function. Hereafter we work with the h = 0 
limit only. Using the known asymptotic behaviour of the r function it is straightforward 
to derive the leading order asymptotic form of the density profile and local susceptibility. 
We find 

P ( Z )  = pS+ ( P ,  - P J  e-2iz h = O  (31) 

x ( z )  = ( ~ , - p ~ ) i - ~  e-’“(czi+(zi)’) h=O (32) 
where c is a constant O ( 1 ) .  The first result is not new. Abraham and Huse (1988) have 
derived an equivalent result in a more complex SOS model of interfacial fluctuations. 
Note that in the limit iz+O, (31) is consistent with the short-distance expansion 
prediction (19) for the density profile. The second result (32) is the desired result for 
the asymptotic form of the local susceptibility. Note that it is indeed a scaled function 
of zips multiplied by an  amplitude a r-A (recall ( 7 a ) ) .  For fixed arbitrary (but large) 
z, (32) reduces, in the limit i-0,  to 

and 

X(Z)K i-’z h = O , z i < < l  

which is precisely the scaling prediction (13) in d = 2. 
Before discussing the local susceptibility for complete wetting it is worthwhile 

recalling the mean-field result ( d > 3 )  for x ( z )  for critical wetting with short-ranged 
forces. An analytic solution of the Sullivan model (Tarazona and Evans 1982; Parry 
and Evans 1988) yields 

x(z)a j - ‘  e(‘/%) h = 0, r a 2 3  Cb (33) 
where & denotes the bulk liquid correlation length which is finite at the wetting 
transition. The first factor is consistent with the sum rule requirement (11) since 
p,=O(In)  in mean field whilst the exponential term is not inconsistent with the 
mean-field limit of the exponent combination (1 - a,)/p. appearing in (13). Comparison 
of the mean field and d = 2 results highlights the expected qualitative difference between 
fluctuations in the two cases. Fluctuations are more strongly localized to the interfacial 
region in higher dimensions. 

3.2. Complete wetting 

The analysis for complete wetting is somewhat easier. From Lipowsky (1985) the 
Schrodinger equation for the eigenfunctions for the potential (22b) is 
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where we have set 2 p 2 u =  1. The boundary condition is +,(O)=O which results from 
the hard-wall potential. It follows (van Leeuwen and Hilhorst 1981; Lipowsky 1985) 
that the lowest-energy eigenfunction is 

I),(/)= A i ( h ' l 3 / -  IAol) (35) 
with energy 

Eo=lA01h2'3. (36) 
Here A, is largest zero of the Airy function Ai. It immediately follows the density 
profile p(z) is given by 

It is clear that the position dependence of the density profile is a function of the 
scaled variable z//-zh"' in d = 2  vindicating the scaling hypothesis. From (37) it 
follows that 

p(z)=p,-constanthz'+ . . .  hz3<< 1 (38) 
and 

x ( z )  =constant z 3  hz'cc 1 (39) 
in accordance with the scaling predictions for d = 2. It is profitable to compare (39) 
with the mean-field ( d > 3 )  result for complete wetting with short-ranged forces 
(Tarazona and Evans 1982; Parry and Evans 1988) 

,y(z)cse'"t.' l z z z ( b .  (40) 
As was the case for critical wetting, the exponential dependence of the local 

susceptibility would appear to be consistent with the mean-field limit of the exponent 
UPS". 

4. Scaling of the pair correlation function for critical wetting 

The two-point density-density correlation function G(r,, r 2 )  is defined by 

= ( p ( r d p ( 4 -  p ( r J ~ ( r 2 )  + - r2)P(rI) (41) 

where ( ' )  deno!es the ensemb!e zverage. Given the tra.s!ationa! invariance pzra!!e! !O 
the substrate it is convenient to Fourier transform with respect to the transverse distance 
R between particles situated at distances z , ,  z2 from the wall: 

G ( z , ,  2,; 0)- dR G(zt, 22; R )  

(42) 

where the expansion is in wavevector Q. Equation (42) defines the transverse moments 
of the correlation func{ion. 

For critical wetting transitions there exists a number of powerful and exact sum 
rule results for the behaviour of the density-density correlation function near the 

I 
- - G,(z:; z:) + Q2G,(z,, 2:) +. . . 
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substrate (Henderson 1986; Evans and Parry 1989). These allow the identification of 
the singular contributions to G,(z , ,  z2)  and G2(z , ,  z2)  for zlr  z2-  a: 

Gvg( U ,  U )  a i-"~ h = O  (43a) 

h = O .  (43b) G;'"ya, a)oc  i-2'"P.' 

Equations (430) and (436) allow the transverse correlation length to be defined near 
the wall 

G;'"p(a, a) 
G p g ( a ,  a )  (57,'- - 

Substitution of (43) in (44) leads to the conclusion that the transverse correlation 
length at the wall diverges with the same exponent uIl as the transverse correlation 
length defined at the fluctuating liquid-vapour edge of the wetting film (recall the 
exponent relation 2uli = 2- a,+2/3.). It is quite remarkable that this conclusion follows 
from formal surface thermodynamic arguments. 

The same cannot be said of complete wetting. Whilst sum rule resuits for complete 
wetting are very interesting (Henderson and van Swol 1984; Parry and Evans 1988) 
they do  not facilitate the immediate identification of any singular contributions to G 
(see the discussion for further remarks). 

Equations (43) and (44) complement the well known oz behaviour of G near the 
liquid-vapour edge of the wetting film: 

This form is expected to be valid in all dimensions since the exponent analogous to 
7 is zero (Lipowsky and Fisher 1987). 

Explicit mean-field analysis has verified the sum rule predictions (43) for d above 
the upper critical dimension. In the next section we study the correlation function for 
an interfacial Hamiltonian model of two-dimensional critical wetting and confirm the 
sum rule predictions for this particular case. Before doing so we extend the scaling 
analysis of section 2 to the pair correlation function. Assuming that oz behaviour is 
valid throughout the system it suffices to consider scaling of the zeroth moment 
G,,(z,, z2) .  From (45) it is apparent that 

Go(/, W - L 2 5 f - 5 i - '  d <3. (46) 
In the strong-fluctuation regime it is natural to suppose that G,,(zl, z2)  contains a 
singular piece that is a scaled function of z , / l ,  z2 / l ,  i.e. 

Gt"g(z , ,  z2)  = $ l + ( ~ , t P * ,  zzta%) h = O  (47) 
which reduces to (46) when z , ,  z2-  1. In the limit z ,  i p s ,  r , iP*+ 0 it is plausible to assume 
that the leading term in the expression for the scaling function 4 separates into a 
product of two separate functions, i.e. 

4 ( z I  t P s ,  ~ ~ r ~ . )  + $ ( z ,  iPs)b(z2 io.) + . . . h =0, z , ,  z2<< 

Assuming &(o)ocob as o+O the index b can be identified since, from (430), the 
behaviour near the wall is known. The result is a scaling prediction forthe short-distance 
expansion for the zeroth moment in the strong-fluctuation regime 

z,, z2<< i-O., h = O  Gi"g(z I .  z 2 )CC ; -m(z ,z2 ) (1 -" * ) 'P~  

G""g (z , ,  z,; Q ) =  Gi"'(z,, z2)(1+sfQ2)-' .  
(48) 
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For d = 2, the scaling predictions are particularly simple 

Gt"8(z , ,  z2)oCz,z2 h =0, z , ,  z2<< T-'. (49) 
since U, = 0 (discontinuity) and 

G;'"'(z,, z2)OC--F4z,z2 h =0, z , ,  zi<< i-'.. (50)  
In the next section we check (49) and (50) explicitly for an interfacial Hamiltonian. 

5. Model calculations of the correlation function moments 

In a recent article Burkhardt (1989) has evaluated analytically the partition function 
for the two-dimensional interfacial Hamiltonian (20) in the limit of a contact attractive 
surface field. The model retains a critical wetting transition in this limit. The solution 
allows the energy-energy correlation function P(z, ,  z,; x2-x,) for particles at (z lr  x,), 
( z 2 ,  x2) to be calculated in terms of elementary functions. In the thermodynamic limit 
of an infinitely long interface he finds 

5 : p ( z , ,  z 2 ;  X , - X , )  

where erfc denotes the complementary error function and the scaled variables X ,  2, 
Z are defined by 

In terms of the scaled variables the energy-energy correlation function is a universal 
quantity and is identical to the explicit king model result of KO and Abraham (1989). 
Further, Burkhardt provides a prescription for calculating a spin-spin correlation 
function which he denotes Q(z , ,  z2;x2-x,) in terms of P :  
Q ( 4 , z 2 ;  xz-x,) 

= lom Idmdz: dz; sgn(z, -2:) sgn(z,-z;)P(z:, z ; ;  x2-x,). ( 5 3 )  

It is a straightforward, though tedious, exercise to perform the integrations and 
hence deduce an explicit expression for the correlation function G S  

The moments of G can then be evaluated making use of the results in the appendix. 
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We find, for z2 > zI, 

From ( 5 5 )  and ( 5 6 )  it follows that 

G,(z,, z2) = constant zlzz h = i = O  

which confirms the scaling predictions (49) and (50). However, from (55 )  and (56) it 
is apparent that the ratio C2(z, ,  z2)/Go(zI, z 2 )  = -.$(z,, z2)  is not exactly constant over 
all space. There is a slowly varying position dependent amplitude to (,,(zl, z2)  but this 
does not effect the singular divergence, i.e. &z,, z 2 ) -  i-4 independent of s,, z2 .  

It is profitable to compare the form of Go(+ z2) for d = 2, exactly at the wetting 
transition, with that for d > 3. The mean-field result ( d  > 3) is given by (Evans and 
Parry 1989) 

(59) G,(z,, z2)  = constant e('l+'z)/c~ zI, z 2 >  &, h = i = O  

which should be contrasted with (57) for d =2 .  Thus, the form of Go is very different 
in the mean-field and strong-fluctuation regime. 

6. Discussion 

A few remarks are needed to qualify the scaling predictions. Firstly, it was stated in 
the introduction that our results for the short-distance expansion apply only to systems 
with short-ranged forces and d <3.  Such systems belong to the strong-fluctuation 
regime for critical wetting and the weak-fluctuation regime for complete wetting. 

It is natural to envoke universality and postulate that the results are applicable to 
all fluid-fluid and wall-fluid forces (not just short ranged) provided that the system 
falls in the fluctuation dominated regime. Thus van der Waals forces in d = 2 may 
result in the same singular short-distance expansion (for sufficiently large distances 
z<< I )  for X ( z )  and G,(z,, z2)  for critical and complete wetting, as in the case of 
short-ranged forces ((15), (16), (49) and (50)). However, the presence of long-range 
forces complicates the analysis considerably. This case will be dealt with in a separate 
publication. 

It should be apparent that we have not dealt with the short-distance expansion of 
G,(z,, z2) at complete wetting. As stated earlier, the reason for this is that previous 
sum rule analyses of complete wetting have not yielded an unambiguous condition 
for the singular behaviour of Go(a, a') (see for example table 1 in Evans and Parry 
(1989)). However, the transfer matrix methods discussed earlier can be easily extended 
to calculate the moments of G for two-dimensional SOS models (see for example 



1348 A 0 Parry 

Hemmer and Lund (1988)). We simply quote our final results for complete wetting 
obtained with the repuslsive potential (226): 

Go(z,, zz)E h4i3(z , z2)3  z,, z2<< h-')' (60a) 

GZ(ZI, z z ) ~ ( z i z J 3  z,, z2<< h-"'. (606) 

In the absence of any appropriate sum rule result for Go(a, a )  we must find an 
alternative method for developing its short-distance expansion consistent with the exact 
results (60a) and (606). A simple argument which yields (600) is the following. 
Consider the well known compressibility sum rule 

Now assume that the short-distance expansion 

G?'(z,, z,) = h"~'"(z ,hP:D)~co(z2hB:D)  

dominates the evaluation of (61) if z, << h-':". This is not an unreasonable assumption 
and is justified aposteriori. However, the LHS of (61) is known since ,y(zl)-z:'B:" for 
zI << h-P7.  This determines w. It follows that 

Gp'(Z I ,  z 2 ) - h " ? ( z , , ~ , ) ' / f i ?  - I,, z2<< h-BF. (62) 

Together with the assumption that, within the weak-fluctuation regime, the oz relation 
G2(z , ,  z,)--.$f(z,, z,)G,(z,. z,) remains valid for z,, z2 near the wall we find 

GF8(z,, Z ~ ) = ( Z , Z J ~ / ~ : ~  z,, z2c< h-@:. (63) 

In deriving (63) we have made use of the exponent relation a:"=2vr .  Equations (62) 
and (63) are in agreement with the explicit d = 2 results. Note that to derive G;'"'(z,, z 2 )  
from Gt"g(z,, z,) we have had to assume that the oz relation is correct near the wall. 
Recall that this is known to be true for critical wetting from formal arguments (see 
section 4). 

The result (63) implies that G;'"p(a, a )  - constant at complete wetting. This is in 
agreement with conclusions reached from sum rule analyses of complete wetting (Evans 
and Parry 1989). 

Table 3 summarizes the scaling results for the singular short-distance expansion of 
the density profiles, local susceptibility and density-density correlation function at 
continuous wetting transitions. 

Table 3. Singular shon-distance expansions far the density profile, local susceptibility, 
zero moment correlation function and second moment correlation function for Complete 
and critical wetting in systems with short-ranged forces. All constants o f  proportionality 
have been set to unity. 

Complete wetting Critical wetting 
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Finally, we make contact with a previous scaling analysis of the correlation function 
G(z,,  z2; Q) at critical wetting (Parry and Evans 1989). There it was postulated that 
the ’Wertheim’ form for G(z , ,  z2; Q) given by (45) is modified for z,, z2 near the wall: 

where the scaling function F ( x )  -x for x+O. One may now check the consistency of 
(64) with the scaling theory for p ( z )  and Gt”g(z,, z2) developed in sections 2 and 4. 
Substitution of the scaling result (19) for pring into the Q = O  limit of (64) yields 

Gg’”p(z I ,  2 ) - - t 2 ~ 2 0 ~ + 2 v ~ - 2 ” , ~ ( 2 , 2 2 ) 1 1 - 0 . ) / 8 1  h = 0, z,, z2<< t-’, 

which reduces to (49) for G,(z,, z2)  using the exponent relation 2 - a, = 2ull  - 2p, (table 
2). Thus the short-distance modification of the ‘Wertheim’ form for G(z,, z,; Q) is 
indeed consistent with the scaling theory developed here. Note that the short-distance 
expansion for the density gradient appearing in (64) is not the same for d < 3 as that 
obtained from a Gaussian unfreezing of fluctuations on a mean-field profile. This latter 
procedure, which was assumed to be valid by Evans and Parry (1989) for d < 3 ,  is not 
capable of deriving the correct critical exponents for 2 < d < 3. Whilst such a ‘Gaussian 
unfreezing’ may work in d = 3, the present analysis demonstrates that it cannot be 
trusted in d = 2  where it yields the correct critical exponents. Inspection of (82) of 
Evans and Parry (1989) reveals that the ‘Gaussian unfreezing’ procedure does not yield 
a short-distance expansion. The resulting density profile is not a scaling function of 
z/tl. This is not consistent with the exact two-dimensional interfacial Hamiltonian 
result (29). However, we emphasize that the expression (64) for the modified short- 
distance expansion of G(z,, z2;  Q) is consistent with the scaling arguments of sections 
2 and 4. 

Acknowledgments 

The author has benefited from conversations with R Evans, J R Henderson and 
J Hannay. This research was supported by the SERC. This paper is dedicated to the 
memory of David Sexton. 

Appendix 

In deriving Go and G, the following results have been used: 

Iom’dq q2 err(%+&) =e-...( :+ a +f) 

j o m d q q 2 e r f c ( z + & )  =1+3a+3a2+2u) 8 2  2 3 

where a 0. 
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